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SUMMARY

In epidemiological surveillance it is important that any unusual increase of reported
cases be detected as rapidly as possible. Reliable forecasts based on a suitable tem-
poral model of an epidemiological indicator are necessary to estimate the expected
nonepidemic indicator and elaborate an alert threshold. First, we present a method
for identifying and replacing the abnormal values in the time series, then we apply the
autoregressive integrated moving average approach to forecast the expected nonepi-
demic morbidity of acute respiratory infections and acute diarrhoeal diseases. Using
this approach, we are able to detect the starting data of new epidemic values under
routine surveillance conditions.
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1. Introduction

Epidemiological surveillance is an important component for the public health system
because it provides opportune information about the course of diseases and others
health events that may lead to corrective actions from the health sector. Epidemio-
logical surveillance consists of three interrelated components: continuous systematic
data collection, use of analysis models and inferences from data, and rapid dissemi-
nation of findings to help the public health decision-making process (Thacke.r and
Berkelman, 1998; Nofre, 1992). One major aspect for surveillance systems is to fore-
cast accurately the case occurrence of health events and to detect abnormal values in
case occurrence. An approach used to investigate this problem is based on time se-
ries forecasting models for specific health variables (Serfling, 1963; Choi and Thacker,
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1981; Helfentein, 1986; Zaidi et al., 1989; Watier et al., 1991; Nofre, 1992), particu-
larly the autoregressive integrated moving average models (ARIMA), developed by
Box and Jenkins (1976), is used with success in different situations (Choi and Thacker,
1981; Helfentein, 1986; Zaidi et al., 1989; Watier et al., 1991).

In this paper, we use ARIMA models to forecast the weekly expected morbidity of
acute respiratory infections (ARI) and acute diarrhoeal diseases (ADD), that consti-
tute an important health problem, involving a great deal of the physician, nurses and
health worker’s time in the majority of the countries of our region. The data presen-
ted in this paper consist of 1985-1990 weekly reports of medical patient consultation
from ambulatory facilities all over the country of ARI and ADD in children from 1 to
4 years old. This information is received each week in the Unit of Epidemiological Su-
rveillance at the Institute of Tropical Medicine Pedro Kourf from Provincial Centers
of Epidemiology and Hygiene.

2. Methods

For the ARIMA approach to time series modeling it is necessary to observe a long
equally spaced series of values in a stationary mode. Usually, in infectious diseases
series we observe epidemic peaks superimposed on a stationary process, which cor-
respond to extreme high values (Watier et al., 1991). Different criteria can be used
for detect and replace these abnormal values (Choi and Thacker, 1981; Watier et al.,
1991; Aguirre and Gonzslez, 1992) and we shall consider one of these.

For a time series { X}, t = 1, ...,n} observed weekly during a number of years (1985-
1989 in our case) which does show trend and seasonality, we consider a point X; as
epidemic if its value is greater or equal to the upper 90% confidence limit forecast by
the following model:

2
X¢=a+bt+ Y (cisin(2rit/T) + di cos(2mit/T)) + ar, (1)
i=1
where X; is the number of cases in week t, T' is the series periodicity, a; are inde-
pendent identically distributed random variables with mean zero and finite variance.
The coefficients a, b, ¢;, d; were estimated by the least-squares method.

The epidemic points are replaced in the original series by the expected number
of cases calculated from (1). Therefore we arrive to a smoothed series, which struc-
ture can be estimated by a seasonal ARIMA(p,d, q)(P, D, Q)s2 model and forecasts
can be calculated for the next period of 52 weeks. A general formulation of the
ARIMA(p, d, q)(P, D,Q)s model is the following:

#(B)®(BS)(1 — BY)(1 - BSP)X, = §(B)O(B%)e:, 2)
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where ¢(B) = 1-¢; B—...—¢,BP and ®(BS) = 1-9;B5—...—®pBS?F are the regular
and seasonal autoregressive polynomials, respectively; 6(B) =1 —-6,B — ... — 0,B7
and ©(B%) =1 - ©,B% — ... — ©gB5? are the regular and seasonal moving average
polynomials, respectively; B is the backshift operator, that is, B™X; = X;_,, and
{e:} is a series of uncorrelated random variables with mean zero and variance o2.

When a suitable model is fixed, we defined as an alert threshold the upper 95%
confidence limit forecast by the seasonal ARIMA model. As a warning criterion we
take the observation of two or more consecutive weeks in the case occurrence above
the alert threshold. Experience with this criterion has shown that it usually indicates
situations of epidemiological interest (Serfling, 1963; Aguirre and Gonzilez, 1992;
Aguirre and Alonso, 1993).

In the following we describe the methodology of estimation and diagnostic checking
used in the next section. We use the procedure ARIMA of STATGRAF software
which implement the conditional maximum likelihood estimation method, that is the
parameters estimates maximize the function:

1(9,0%) = -2 In(2ro?) - 5, Q

e

where 9 denotes the model parameters (9 = (©,6) in model (9) and ¢ = (O, ¢;,0,)
in model (10)), S(¥) = Y_{—gpyps1 € (9) is the conditional sum of squares function
and e;(¥) are the residuals obtained using the value ¥ as if it were the true value of
the model’s parameters. A full explanation of this estimation method is presented
e.g. in section 7.2.1 of (Wei, 1990).

After parameter estimation, we assess the model adequacy by checking whether
the model assumptions are satisfied. Particularly, we check if the {e;} is a white noise
process, that is {e:} is a series of uncorrelated random variables with mean zero and
constant variance o2. Also, we check whether the errors are normally distributed
since confidence intervals (8) are based on this assumption.

In order to test if the error mean is zero we use the following t-test:

é
t= 5_-;', (4)

where é=(n—-SP-p) 1Yt sp +pt+1 €ty €6 = e:(9), denotes the estimated residuals

and & %%2 with the number of degrees of freedom d.f. equal to the number of
terms used in the sum S(¥) minus the number of parameters estlmated ie. d.f. =
(n—SP-p)—(p+q+P+Q+1).

A crucial assumption in ARIMA modeling is the uncorrelation of the model’s
errors. Several diagnostic goodness-of-fit tests have been proposed based on the resi-
dual autocorrelations to check the joint null hypothesis Hy : 1y =79 = ... = 1y, =0,
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where r; is the i-th error’s autocorrelation. In this paper, we use the Ljung-Box sta-
tistic (Ljung and Box, 1978), QL p, which is a modification of the portmanteau test
proposed in Box and Pierce (1970):

m
Qe =n(n+2)) (n—k)7'f, (5)
k=1
where 7 = 0" . ) €8x/ Y s, € are the residual autocorrelation. The asymptotic
distribution of Q1. can be approximated by a x? distribution with m — (p+q+ P+
Q) degrees of freedom. Recently, Pefia and Rodriguez (2002) proposed a powerful
portmanteau test based on the residual correlation matrix.

The last step in the diagnostic checking stage was to test whether the errors are
normally distributed. We use the Kolmogorov-Smirnov test using the Lilliefors tables,
see e.g. section 4.6 in (Gibbons and Chakraborti, 1992).

Once we have estimated and checked the selected model, we calculate the forecasts
h steps ahead, X, (h), as follows:

Xn(h) = ‘I’lxn(h - 1) + .t lIJp+P+d+DXn(h —-p- SP —d—- SD) (6)
+én(h) + Z1én(h — 1)+ ... + Eg4@én(h — g+ QS),

where
Xn(4) = E(Xntj | Xny Xn-1,...), j21
' Xn(j)=Xn+j, i<o
én(§) =0, j=1
én(j) = én+js Jj<1
and polynomials ¥(B) and Z(B) are defined by ¥(B) = ¢(B)®(B%)(1-B?)(1-B5P)
and Z(B) = 0(B)©(BS). These forecasts have the optimal property of minimizing
the expected value of:

52
> (Xnih = Xa(h))?, (7)

h=1
where X, (h) is the forecast h steps ahead, X+, would be the observed value at time
n+h.
If the {e;} are normally distributed we can calculate the 100(1 — &)% confidence
intervals for X, (h) or 100(1 — a)% forecast limits using the following expression:

h-1
Xn(h’) * Zaf2 (1 + E ‘Pi) Ge, (8)

k=1

where ;. are the coefficients of polynomial ¢(B) defined by relation ¥(B)yp(B) =
E(B) and 2,2 is the /2 percentile of the standard normal distribution.
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3. Results and discussion

The typical configurations corresponding to the seasonal ARIMA(p, d, q)(P, D, Q)s2
models were obtained from the analysis of the simple and partial autocorrelation
functions of the ARI and ADD series. Even though with slight differences it was
observed that the series were following a pattern type (9) for ARI series and a pattern
type (10) for ADD series:

(1- B)(1 - B*®)X; = (1 — ©B')(1 - 6B)e; (9)

(1—¢,B — ¢,B*)(1 — B2)X; = (1 — ©B'?)e;. (10)
That is, the ARI series follows an ARIMA(0,1,1)(0;1,1)52 model whereas the ADD
series follows an ARIMA(2,0,0)(0;1,1)s2.

With the selected models we proceeded to estimate the parameters using the pro-
cedure ARIMA of STATGRAF software. The estimated parameters as well as Ljung-
Box statistic (Qrp), Kolmogorov-Smirnov (K-S) test of normality of residuals are
given in Tables 1 and 2 for each province. Provinces were coded as follows: PR Pinar
del Rio, PH Provincia Habana, CH Ciudad de La Habana, MT Matanzas, VC Villa
Clara, CF Cienfuegos, SS Sancti Spiritus, CA Ciego de Avila, CM Camagiiey, LT Las
Tunas, HO Holgufn, GM Granma, SC Santiago de Cuba, GT Guantdnamo and 1J
Isla de la Juventud.

Table 1. Parameter estimates and model checking test for ARI series

Series 0(s.e.) O(s.e.) QLs(p)* K — Stestp
PR 0.67 (0.05 0.52 (0.07) 26.37 (0.09) p>09
PH 0.70 (0.05) 0.52 (0.07) 18.27 (0.43) p>09
CH 0.81 (0.04) 0.81 (0.04) 25.75 (0.10) p>0.3
MT 0.68 (0.05) 0.50 (0.07) 17.38 (0.49) p>0.9
VC 0.77 (0.05) 0.62 (0.07) 15.63 (0.61) p>0.9
CF 0.70 (0.05) 0.61 (0.07) 13.33 (0.77) p>0.9
ss 0.73 (0.05) 0.63 (0.06) 20.87 (0.28) p>0.9
CA 0.83 (0.04) 0.61 (0.06) 23.82 (0.16) p>09
CM 0.78 (0.05) 0.56 (0.07) 15.22 (0.66) p>0.9
LT 0.89 (0.03) 0.56 (0.07) 20.39 (0.31) p>0.3
HO 0.73 (0.05) 0.45 (0.07) 23.87 (0.15) p>03
GM 0.92 (0.03) 0.58 (0.06) 15.52 (0.62) p>0.9
SC 0.80 (0.04) 0.65 (0.06) 18.21 (0.44) p>0.9
GT 0.94 (0.03) 0.55 (0.07) 25.92 (0.10) p>0.9
1 0.71 (0.05) 0.49 (0.07) 20.54 (0.30) p>0.9
CUBA 0.66 (0.05) 0.57 (0.07) 17.32 (0.50) p>0.9

*Box-Ljung statistic based on the first 20 residual autocorrelations,
p is the p-value of Box-Ljung test
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Table 2. Parameter estimates and model checking test for ADD series
Series ¢(s.e.) ¢,/6(s.e.)* O(s.e.) Qrs(p)** K —Stestp
PR 0.36 (0.07)  0.19 (0.07)  0.44 (0.07) _ 20.19 (0.26) p>05
PH 0.34 (0.07)  0.22 (0.07) 047 (0.07)  7.30 (0.97) p>04
CH 0.30 (0.07)  0.33(0.07)  0.48 (0.07)  12.33 (0.77) p>0.9
MT 0.42 (0.07)  0.30 (0.07)  0.53 (0.07)  16.71 (0.47) p>0.1
Ve 047 (0.07)  0.26 (0.07)  0.62 (0.07)  19.03 (0.32) p>0.1
CF 0.32 (0.07)  0.31(0.07)  0.55 (0.07)  24.74 (0.10) p>09
SS 031 (0.07)  0.18 (0.07)  0.48 (0.07)  14.09 (0.66) p>0.9
CA 0.87 (0.06)  0.58 (0.09)*  0.56 (0.07)  23.78 (0.12) p>02
CM 0.91 (0.04) 0.5 (0.08)*  0.54 (0.07)  9.40 (0.92) p>09
LT 0.88 (0.05)  0.52 (0.09)*  0.61(0.07) 19.31 (0.31) p>03
HO 0.88 (0.05)  0.52 (0.09)*  0.52 (0.07)  24.89 (0.09) p>09
GM 0.20 (0.07)  0.26 (0.07)  0.57 (0.06)  16.53 (0.48) p>0.9
sC 0.27 (0.07)  0.26 (0.07)  0.50 (0.07)  16.96 (0.45) p>0.05
GT 023 (0.07)  0.26 (0.07) 047 (0.07)  12.07 (0.79) p>0.9
1J 0.88 (0.08)  0.68 (0.11)*  0.56 (0.07)  20.93 (0.22) p>09
CUBA 043 (0.07)  0.26 (0.07)  0.47(0.07)  16.39 (0.49) p> 0.9

*In these series indicated by (*), the parameter estimated was é,

that is, the moving average parameter
** Box-Ljung statistic based on the first 20 residual autocorrelations,

p is the p-value of Box-Ljung test

After obtaining the adjusted model for each province, we calculated the 1990 fo-
recasts and their upper 95% confidence limit. The result for CUBA series is shown
in Figures 1 and 2. Also, t-test values given in Table 3 show that the residual mean
is not statistically different from zero. Therefore the seasonal ARIMA type of mode-
ling seems well adapted to describe the underlying structure of ARI and ADD cases

reported in non-epidemic periods.

The alert threshold previously estimated is compared with the observed data for
the year 1990, and it was effective in detecting the epidemic episodes of ARI and

ADD.
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Figure 1. Estimated forecast function for ARI series. Cuba 1990.
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Figure 1. Estimated forecast function for ADD series. Cuba 1990.
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Table 3.Mean, standard error and t-test for ARI and ADD series

ARI (n = 207) ADD (n = 208)
Series Mean e; Oe t-test p*  Mean e; Oe t-test p*
PR -2.79 107.28 0.70 0.59 45.52 0.85
PH 0.61 254.08 0.97 1.00 82.01 0.85
CH 0.29 616.80 0.99 29.73  -284.78 0.12
MT -2.67 135.17 0.77 0.39 62.54 0.92
VvC 0.40 182.91 0.97 -5.55 10247 0.43
CF 1.21 117.30 0.95 4.05 43.53 0.17
SS 0.47 114.15 0.88 1.14 28.66 0.56
CA -3.61 86.96 0.54 2.52 32.90 0.26
CM -15.74 203.31 0.26 2.711 57.07 0.49
LT ~-7.19 73.70 0.15 0.19 33.85 0.93
HO 0.28 191.98 0.98 2.67 61.94 0.53
GM 8.71 146.01 0.38 0.23 44.57 0.93
SC -13.59 160.65 0.22 0.93 46.91 0.88
GT -5.73 68.66 0.22 0.42 46.15 0.89
1J 0.85 33.87 0.71 1.28 17.29 0.28
CUBA -11.53  2153.56 0.93 56.18  759.81 0.28

*p is the p-value of the t-test
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Prognozowanie oczekiwanej nieepidemicznej zachorowalnoéci
na choroby ostre

STRESZCZENIE

Skuteczne ostrzeganie epidemiologiczne wymaga, aby kazdy wzrost przypadkéw cho-
robowych byl wykryty tak szybko, jak to mozliwe. Zwigzane jest to z prognozowa-
niem opartym na modelu czasowym. W pracy prezentowana jest metoda stuzaca do
identyfikowania i zastepowania nienormalnych wartosci szeregu czasowego. Nastepnie
stosuje si¢ podejécie oparte na modelu autoregresyjnym redniej ruchomej dla prze-
widywania liczby przypadkéw chorobowych. Opisana metoda pozwala na wykrycie
poczatku epidemii w warunkach rutynowego procesu zbierania danych.

SLOWA KLUCZOWE: ostrzeganie epidemiologiczne, szeregi czasowe, prég alarmowania



